| ►NHLIB | |
| ►NBLAS | |
| CAdjoinView | Provide adjoint view, e.g. conjugate transposed of a given matrix |
| CMatrix | Standard dense matrix in basic linear algebra, i.e. BLAS/LAPACK |
| CMatrixBase | Defines basic interface for matrices |
| CMatrixView | Provide generic view to a matrix, e.g. transposed or adjoint |
| CMemBlock | Defines a reference countable memory block |
| CRange | Indexset with modified ctors |
| CTransposeView | Provide transposed view of a matrix |
| CVector | Standard vector in basic linear algebra, i.e. BLAS/LAPACK |
| Cfac_options_t | Options for matrix factorisations |
| Cinv_options_t | Options for matrix inversion |
| Cis_complex_type | |
| Cis_float | |
| Cis_integer | |
| Creal_type | |
| Csolve_option_t | Determines characteristics of triangular system |
| CT2DBlockClusterVis | Base class for block cluster tree visualisation in 2D |
| CT2DClusterVis | Base class for cluster tree visualisation in 2D |
| CT2DGridVis | Base class for 2D grid visualisation (by projection) |
| CT2DMatrixVis | Implements 2D based matrix visualisation |
| CTACA | Defines interface for all ACA algorithms and implements classical ACA |
| CTACAFull | ACA with full pivot search (complexity: O(n²)) |
| CTACAPlus | Implements ACA+, which corrects some of the deficits of the original ACA algorithm |
| CTAcousticScatterBF | Bilinear form for acoustic scattering |
| CTAdmCondition | Defines basic interface for admissibility conditions |
| CTAlgAdmCond | Base class for algebraic admissibility conditions |
| CTAlgCTBuilder | Base class for cluster tree construction algorithms based on graph partitioning with graph defined by a sparse matrix |
| ►CTAlgNDCTBuilder | Enhances algebraic clustering by nested dissection |
| CTOptClusterSize | Controls optimal cluster size per tree level |
| CTAlgPartStrat | Base class for partitioning strategies for algebraic clustering |
| CTAutoBSPPartStrat | Automatic choice of best partitioning strategy |
| CTAutoCoordIO | Class for coordinate I/O with file format detection |
| CTAutoGridIO | Class for grid I/O with file format detection |
| CTAutoMatrixIO | Class for matrix I/O with automatic file format detection |
| CTAutoSolver | Implements an iterative solver automatically choosing appropriate algorithm based on matrix criteria |
| CTAutoVectorIO | Class for vector I/O with automatic file format detection |
| CTBCBuilder | Recursively build block cluster tree with supplied admissibility condition |
| CTBEMBF | Base class for BEM bilinear forms with ansatz and test space |
| CTBFCoeffFn | Provide matrix coefficients defined by bilinear forms |
| CTBFSAlgPartStrat | Graph partitioning using BFS algorithm and FM optimisation |
| CTBiCGStab | Implements BiCG-Stab iteration |
| CTBilinearForm | Base class for all bilinear forms |
| CTBlockCluster | Representing a node in a block cluster tree as product of two clusters |
| CTBlockClusterTree | Represents a block cluster tree |
| CTBlockClusterVis | Base class for block cluster tree visualisation |
| CTBlockDistrBC | Class for block-wise block cluster tree distribution |
| CTBlockIndexSet | Represents a product of two indexsets |
| CTBlockMatrix | Class for a n×m block matrix of TMatrix sub matrices |
| CTBlockTruncAcc | Truncation accuracy defined blockwise for block index sets |
| CTBlockVector | Class for a blocked, scalar vector |
| CTBSPCTBuilder | Base class for all cluster tree constructors based on BSP |
| CTBSPNDCTBuilder | Combines binary space partitioning with nested dissection based on connectivity defined by a sparse matrix |
| CTBSPPartStrat | Base class for partitioning strategies for geometrical BSP clustering |
| CTByteStream | Implements a stream of bytes for storage purposes |
| CTCardBSPPartStrat | Partition according to cardinality of index sets |
| CTCBCoeffFn | Eval real valued matrix coefficients with call-back function |
| CTCBProgressBar | Class for progress bar calling user defined call back function upon change in status |
| CTCG | Implements conjugate gradient iteration |
| CTCluster | Represents a node in a cluster tree with an arbitrary number of sons |
| CTClusterBasis | Class representing a nested cluster basis |
| CTClusterBasisIO | Base class for cluster basis input/output |
| CTClusterBasisVis | Base class for cluster basis visualisation |
| CTClusterTree | Represents a cluster tree with permutation of index sets |
| CTClusterVis | Base class for cluster tree visualisation |
| CTCoarsen | Implements coarsening, e.g. agglomeration of blocked matrices into dense or low-rank matrices if the later use less memory |
| CTCoeffFn | Base class for returning coefficient for a given indexpair (i,j) in internal ordering |
| CTColumnMatrixNorm | Computes norm for each column of the matrix |
| CTConsoleProgressBar | Class for a progress bar printing progress on standard console (or via IO streams) |
| CTCoordinate | Stores coordinate information for indices |
| CTCoordIO | Base class for coordinate I/O defining interface |
| CTCoordVis | Base class for coordinate visualisation |
| CTCPUTimer | Timer class measuring CPU time |
| CTDAGNode | Base class for DAG nodes defining interface and basic functionality |
| CTDenseClusterBasisBuilder | Class for constructing cluster bases using dense matrices |
| CTDenseMatrix | Represent a dense matrix |
| ►CTDiGraph | Class for directed graph represented by adjacency matrix in sparse format (assuming sparse graph!) |
| CTIterator | Iterator to predecessor/successor lists |
| ►CTDistrBC | Base class for all block cluster distribution methods |
| CTCostFunc | Cost function for block clusters in load balancing |
| CTDistrScalarVec | Distributed scalar vector: only local part is stored |
| CTEWGraph | Represents undirected graph with edge weights |
| CTFacInvMatrix | Baseclass for representing the inverse of factorised matrices |
| CTFrobeniusNorm | Computes Frobenius norm ‖·‖_F of a matrix |
| CTFVS | Uses a heuristic algorithm to compute feedback vertex set of a directed graph represented by a sparse matrix |
| CTGeomBSPPartStrat | Partition according to geometrical volume of index sets |
| CTGeomCluster | Extend standard cluster by bounding box |
| ►CTGeomCTBuilder | Base class for all cluster tree constructors based on geometry data |
| Cdata_t | Datatype for internal argument transfer |
| CTOptClusterSize | Controls optimal cluster size per tree level |
| CTGeomGroupCTBuilder | Enhances geometrical ct builder by allowing to group indices, e.g. the groups are clustered and later expanded, ensuring that all indices in a group are in the same cluster NOTE: bounding boxes per index are not yet supported (bb_min/bb_max) |
| CTGeomPartCTBuilder | Enhances other geometrical ct builders by allowing the user to define the first level of index partitioning by a given vector |
| CTGhostMatrix | The class acts as a place holder for non-local matrix blocks to access logical information, e.g. size, processor number, but can not perform any computations |
| CTGMRES | Implements GMRES iteration with restart |
| CTGMSHGridIO | Class for grid I/O in GMSH format |
| ►CTGraph | Class for a undirected graph stored as adjacency matrix in CRS representation |
| CTAdjNodes | |
| CTAdjNodesWeights | |
| CTNodes | |
| CTGridIO | Base class for reading grids |
| CTGridVis | Base class for grid visualisation |
| CTGVBlockClusterVis | Block cluster tree visualisation in GraphViz format |
| CTGVClusterVis | Cluster tree visualisation in GraphViz format |
| CTH2Matrix | Class for an H²-matrix, which extends block matrices with additional functionality, e.g. permutations and uniform vectors |
| CTHBMatrixIO | Class for matrix I/O in Harwell-Boeing and Rutherford-Boeing format |
| CTHBVectorIO | Class for vector I/O in Harwell-Boeing and Rutherford-Boeing format |
| ►CTHCA | Uses hybrid cross approximation (HCA) for computing low rank approximation |
| Cstat_t | |
| CTGeneratorFn | Class defining kernel generator function used by HCA |
| CTHClusterBasisBuilder | Class for constructing cluster bases using H-matrices |
| CTHelmholtzDLPBF | Bilinear form for Helmholtz double layer potential |
| CTHelmholtzDLPGenFn | Kernel generator function for Helmholtz DLP |
| CTHelmholtzSLPBF | Bilinear form for Helmholtz single layer potential |
| CTHelmholtzSLPGenFn | Kernel generator function for Helmholtz SLP |
| CTHiLoFreqGeomAdmCond | Admissibility for high and low frequency regimes |
| CTHLibClusterBasisIO | Cluster basis I/O in HLIBpro file format |
| CTHLibCoordIO | Class for coordinate I/O in HLIB format |
| CTHLibGridIO | Class for grid I/O in HLIB format |
| CTHLibMatrixIO | Class for matrix I/O in HLIB format |
| CTHLibVectorIO | Class for vector I/O in HLIB format |
| CTHMatrix | Class for an H²-matrix, which extends block matrices with additional functionality, e.g. permutations |
| CTIdMatBuilder | Construct identity matrix for given block cluster trees |
| CTIndexSet | Represents an indexset with contigously numbered indices, defined by the first and last index in the set |
| CTInvarBasisQuadBEMBF | Class for quadrature based bilinear forms with invariant basis functions |
| CTInvarBasisQuadHCAGenFn | Class for BEM HCA generator functions with invariant basis functions |
| CTJacobi | Implements Jacobi preconditioner |
| CTLaplaceDLPBF | Bilinear form for Laplace double layer potential |
| CTLaplaceDLPGenFn | Kernel generator function for Laplace DLP |
| CTLaplaceSLPBF | Bilinear form for Laplace single layer potential |
| CTLaplaceSLPGenFn | Kernel generator function for Laplace SLP |
| CTLDL | Computes LDL factorisation or |
| CTLDLInvMatrix | Represents the inverse of a LDL factored matrix |
| CTLDU | Computes LDU factorisation |
| CTLDUInvMatrix | Represents the inverse of a LDU factored matrix |
| CTLinearOperator | Base class for all linear operators mapping vectors to vectors |
| CTLL | Computes Cholesky factorisation or |
| CTLLInvMatrix | Represents the inverse of a Cholesky factored matrix |
| CTLockable | Base class for all mutex equipped classes |
| CTLowRankApx | Base class for all low rank approximation techniques |
| CTLU | Computes LU factorisation |
| CTLUInvMatrix | Represents the inverse of a LU factored matrix |
| CTMassBF | Bilinear form for mass matrix |
| CTMatBuilder | Base class for building matrices implementing basic management and parallel construction |
| CTMatlabCoordIO | Class for coordinate I/O in Matlab format |
| CTMatlabMatrixIO | Class for matrix I/O in Matlab format |
| CTMatlabVectorIO | Class for vector I/O in Matlab format |
| CTMatrix | Base class for all matrices, defining basic properties, e.g. underlying block index and processor set |
| ►CTMatrixHierarchy | Represents a level-wise hierarchy of matrices |
| CTSparseBlockMatrix | Represents a n×m block matrix with only a small number of non-null sub matrices stored in an efficient way |
| CTMatrixIO | Base class for Matrix IO defining interface |
| CTMatrixNorm | Baseclass for matrix norm computations |
| CTMatrixVis | Base class for matrix visualisation |
| CTMaxwellEFIEMassBF | Bilinear form for Maxwell EFIE mass matrix |
| CTMaxwellMFIEMassBF | Bilinear form for Maxwell MFIE mass matrix |
| CTMETISAlgPartStrat | Graph partitioning using METIS |
| CTMINRES | Implements the MINRES iteration |
| CTMLAlgPartStrat | Multi level graph partitioning |
| CTMMCoordIO | Class for coordinate I/O in MatrixMarket format |
| CTMMMatrixIO | Class for matrix I/O in MatrixMarket format |
| CTMMVectorIO | Class for vector I/O in MatrixMarket format |
| CTMutex | Wraps default mutices |
| CTNDBSPPartStrat | Special partition strategy to optimized nested dissection clustering |
| CTNDDistrBC | Class for block cluster tree distribution for nested dissection |
| ►CTNodeSet | Represents a set of nodes by an array |
| Citerator | STL iterator for TNodeSet |
| CTOctaveMatrixIO | Class for matrix I/O in octave format |
| CTPartAlgCTBuilder | Enhances algebraic clustering by allowing the user to define the first level of index partitioning, e.g. define which index belongs to which son cluster |
| CTPCABSPPartStrat | Partition according to principle component analysis |
| CTPDFBlockClusterVis | Class for block cluster tree visualisation in PDF format |
| CTPDFClusterVis | Class for cluster tree visualisation in PDF format |
| CTPDFGridVis | Class for grid visualisation in PDF format |
| CTPDFMatrixVis | Class for matrix visualisation in PDF format |
| CTPermCoeffFn | Eval coefficient function with reordered indices, e.g. change internal to external ordering |
| CTPermHCAGeneratorFn | Base class for HCA generator functions using row/column permutations |
| CTPermMatrix | |
| CTPermutation | Describes permutation of index sets |
| CTPLTMGCoordIO | Class for coordinate I/O in PLTMG format |
| CTPLTMGMatrixIO | Class for matrix I/O in PLTMG format |
| CTPlyGridIO | Class for grid I/O in Ply format |
| CTProcSet | Describes a processor set of continuously numbered processors |
| CTProgressBar | Base class defining interface |
| CTPSBlockClusterVis | Class for block cluster tree visualisation in PostScript format |
| CTPSClusterBasisVis | Cluster basis visualisation in PostScript format |
| CTPSClusterVis | Class for cluster tree visualisation in PostScript format |
| CTPSCoordVis | Coordinate visualisation in PostScript format |
| CTPSGridVis | Class for grid visualisation in PostScript format |
| CTPSMatrixVis | Class for matrix visualisation in PostScript format |
| CTQuadBEMBF | Base class for all quadrature based bilinear forms |
| ►CTQuadHCAGenFn | Base class for HCA generator functions using quadrature |
| Cstat_t | |
| Ctri_eval_option_t | Determines characteristics of triangular system |
| Ctri_quad_rule_t | |
| CTRichardson | Implements Richardson iteration |
| CTRkMatrix | Represents low rank matrices in factored form: |
| CTRowMatrixNorm | Computes norm for each row of a matrix |
| CTSAMGCoordIO | Class for coordinate I/O in SAMG format |
| CTSAMGMatrixIO | Class for matrix I/O in SAMG format |
| CTSAMGVectorIO | Class for vector I/O in SAMG format |
| CTScalarVector | Class for a scalar vector |
| CTScopedLock | Provides automatic lock and unlock for mutices |
| CTSFCDistrBC | Class for distributing block cluster trees using space filling curves |
| CTSOR | Implements SOR preconditioner |
| CTSparseMatrix | Class for a sparse matrix stored in compressed row storage format |
| CTSpectralNorm | Computes spectral norm ‖·‖₂ of matrix (or linear operator) |
| CTStdAlgAdmCond | Standard admissibility condition based on matrix graph criteria |
| CTStdGeomAdmCond | Standard admissibility for FEM/BEM applications normal : adm iff min( diam(τ), diam(σ) ) ≤ η·dist(τ,σ) use_max: adm iff max( diam(τ), diam(σ) ) ≤ η·dist(τ,σ) |
| CTSurfMeshGridIO | Class for grid I/O in Surface Mesh format |
| CTSVDLRApx | Uses exact SVD to compute low rank approximation (WARNING: O(n³) complexity) |
| CTThreadCPUTimer | Timer class measuring CPU time of current thread |
| CTTimer | Timer class |
| CTTruncAcc | Defines accuracy for truncation of low rank blocks |
| CTTypeInfo | Provides basic interface and methods for RTTI |
| CTUniformBlockVector | Class for a uniform block vector, e.g. of uniform sub blocks |
| CTUniformMatrix | Represents low rank matrices as uniform matrix: , where and are cluster bases and holds the corresponding coefficients |
| CTUniformVector | Class for a uniform vector, e.g. represented as with cluster basis and coefficients |
| CTVector | Base class for all vectors defining basic interface |
| CTVectorIO | Base class for vector IO defining interface |
| CTVirtualVector | A virtual vector gets his data from some real vector and behaves just like it, except memory-management |
| CTVRMLClusterVis | Cluster output in VRML format |
| CTVRMLCoordVis | Coordinate visualisation in VRML format |
| CTVRMLGridVis | Class for grid visualisation in VRML format |
| CTVTKCoordVis | Coordinate visualisation in VTK format |
| CTVTKGridVis | Class for grid visualisation in VTK format |
| CTWallTimer | Timer class measuring wall clock time |
| CTWeakStdGeomAdmCond | Combination of standard and weak admissibility |
| CTZeroLRApx | Approximate all low-rank blocks by zero, e.g. for nearfield only |
| CTZeroMatrix | Class for a null matrix with only zero coefficients |
| Ccomplex | Class for a complex numerical type |
| Chlib_acc_blocked_t | |
| Chlib_acc_fixed_eps_t | |
| Chlib_acc_fixed_rank_t | |
| Chlib_acc_u | |
| Cquad_rule_t | Holds quadrature rule with points and weights for two triangles |
| CTChacoPartStrat | Graph partitioning using CHACO |
| CTFacMatrix | Implements matrix-vector multiplication with nearfield part of H-matrix |
| CTScotchPartStrat | Graph partitioning using Scotch |