HLIBpro  2.3.1
Public Member Functions | List of all members
TJacobi Class Reference

implements Jacobi preconditioner More...

#include <TJacobi.hh>

Inheritance diagram for TJacobi:
TLinearOperator TTypeInfo

Public Member Functions

 TJacobi (TMatrix *A, const real damping=1.0)
 
const TMatrixmatrix () const
 return sparse matrix
 
real damping_factor () const
 return damping factor
 
bool is_complex () const
 return true, if field type is complex
 
bool is_self_adjoint () const
 return true, of operator is self adjoint
 
virtual void apply (const TVector *x, TVector *y, const matop_t op) const
 
virtual void apply_add (const real alpha, const TVector *x, TVector *y, const matop_t op) const
 
virtual auto domain_vector () const -> std::unique_ptr< TVector >
 return vector in domain space
 
virtual auto range_vector () const -> std::unique_ptr< TVector >
 return vector in range space
 
- Public Member Functions inherited from TTypeInfo
virtual typeid_t type () const =0
 return type ID of object
 
virtual bool is_type (const typeid_t t) const
 return true if local object is of given type ID t
 
virtual std::string typestr () const
 return string representation of type
 

Detailed Description

TJacobi provides application of a Jacobi type preconditioner for a given matrix A, e.g. $ D^{-1} $ with $D$ being the diagonal of A. Here, A may be of any type, e.g. dense, low-rank, block or sparse matrix. The diagonal elements are assumed to be non-zero.

Constructor & Destructor Documentation

TJacobi ( TMatrix A,
const real  damping = 1.0 
)

construct Jacobi preconditioner based on sparse matrix A with damping factor damping

Member Function Documentation

virtual void apply ( const TVector x,
TVector y,
const matop_t  op 
) const
virtual

mapping function of linear operator $A$, e.g. $ y := A(x)$. Depending on op, either $A$, $A^T$ or $A^H$ is applied.

Implements TLinearOperator.

virtual void apply_add ( const real  alpha,
const TVector x,
TVector y,
const matop_t  op 
) const
virtual

mapping function with update: $ y := y + \alpha A(x)$. Depending on op, either $A$, $A^T$ or $A^H$ is applied.

Implements TLinearOperator.