HLIBpro
1.2
|
Table of contents |
In this example, an integral equation is to be solved by representing the discretised operator with an 𝓗-matrix, whereby the 𝓗-matrix is constructed using a matrix coefficient function for entries of the equation system. Furthermore, for the iterative solver a preconditioner is computed using 𝓗-LU factorisation.
Given the integral equation
with and being sought for a given right hand side , the Galerkin discretisation with ansatz functions and test functions leads to a linear equation system
where contains the coefficients of the discretised and is defined by
The right hand side is given by
The code starts with the standard initialisation:
𝓗𝖫𝖨𝖡𝗉𝗋𝗈 supports triangular surface grids and can load such grids stored in several file formats, e.g. HLIB, PLY, SurfaceMesh and Gmsh v2 format. Although individual I/O classes for each file format exist, you may also use automatic file format detection:
Based upon the grid, function spaces for the ansatz and the test space are defined. For Laplace and Helmholtz kernels, piecewise constant and linear function spaces are available, whereas for Maxwell kernels, piecewise constant edge space (RWG elements) is implemented.
The functions spaces provide necessary geometrical information for construction cluster trees and block cluster trees for the defined index sets:
In 𝓗𝖫𝖨𝖡𝗉𝗋𝗈, different kernels are defined by special bilinear forms, each derived from TBEMBF. For reasons of efficiency, e.g. for basis function evaluation, the ansatz spaces are provided to each bilinear form as template arguments. For the Helmholtz single layer potential, the corresponding bilinear form is declared as:
Here, kappa is the wave number of the underlying problem.
For matrix construction, the bilinear form is not fully sufficient as actual matrix coefficients are needed. These are provided by a special coefficient function:
Finally, the low-rank approximation technique and the block-wise accuracy gave to be defined, being ACA+ and in our case. Equipped with these, the TDenseMBuilder class can construct the discretised Helmholtz single layer potential:
Since matrix construction is available in thread parallel form, you may choose to use more than one processor (or thread) for build the 𝓗-matrix. In mach_info
necessary information about the current maximal number of threads are stored.
Building the right-hand side is again performed using quadrature rules over the triangular grid. The corresponding class implementing the quadrature formula is TQuadBEMRHS
.
The function is hereby provided in the form of a TBEMFunction
, or, to be precise a derived class where the method eval
has to be overloaded:
In both cases, the quadrature formula and the BEM function, the value type complex
and the function space (for TQuadBEMRHS
) are defined as template arguments.
As standard iteration schemes will usually fail with the above equation system, 𝓗-LU preconditioning is used to ensure and to speed up convergence.
Since the matrix is modified during LU factorisation, a copy of it has to be created and provided for factorisation. The result of factorise_inv
is a matrix object suitable for evaluation of the inverse of and can be used for preconditioning:
Upon exit, x contains the computed solution to the initial discrete problem.
The standard finalisation and catch
block finishes the example: