HLIBpro
1.2
|
Classes | |
class | Matrix< T_value > |
Standard dense matrix in basic linear algebra, i.e. BLAS/LAPACK. More... | |
class | TransposeView< T_matrix > |
Provide transposed view of a matrix. More... | |
class | AdjoinView< T_matrix > |
Provide adjoint view, e.g. conjugate transposed of a given matrix. More... | |
class | MatrixView< T_matrix > |
Provide generic view to a matrix, e.g. transposed or adjoint. More... | |
class | MatrixBase< T_derived > |
defines basic interface for matrices More... | |
class | MemBlock< T > |
Defines a reference countable memory block. More... | |
class | NullMemBlock< T > |
special version of a memory block for NULL pointers More... | |
class | MemBlockRef< T > |
Pointer to handle delete operations for memory blocks like refptr. More... | |
class | Range |
defines an indexset [ first, last ] with stepwidth stride More... | |
class | Vector< value_t > |
Standard vector in basic linear algebra, i.e. BLAS/LAPACK. More... |
Vector Algebra | |
template<typename T > | |
void | fill (const T f, Vector< T > &x) |
fill vector with constant | |
template<typename T > | |
void | conj (Vector< T > &x) |
conjugate entries in vector | |
template<typename T > | |
void | scale (const T f, Vector< T > &x) |
scale vector by constant | |
template<typename T > | |
void | copy (const Vector< T > &x, Vector< T > &y) |
copy x into y | |
template<typename T > | |
void | swap (Vector< T > &x, Vector< T > &y) |
exchange x and y | |
template<typename T > | |
idx_t | max_idx (const Vector< T > &x) |
determine index with maximal absolute value in x | |
template<typename T > | |
idx_t | min_idx (const Vector< T > &x) |
determine index with minimax absolute value in x | |
template<typename T > | |
void | add (const T alpha, const Vector< T > &x, Vector< T > &y) |
compute y ≔ y + α·x | |
template<typename T > | |
T | dot (const Vector< T > &x, const Vector< T > &y) |
compute <x,y> = x^H · y | |
template<typename T > | |
T | dotu (const Vector< T > &x, const Vector< T > &y) |
compute <x,y> without conjugating x, e.g. x^T · y | |
template<typename T > | |
num_traits< T >::real_t | norm2 (const Vector< T > &x) |
compute ∥x∥₂ | |
template<typename T > | |
bool | abs_lt (const T a1, const T a2) |
template<typename T > | |
T | stable_dotu (const Vector< T > &x, const Vector< T > &y) |
compute dot product x · y numerically stable | |
template<typename T > | |
T | stable_sum (const Vector< T > &x) |
compute sum of elements in x numerically stable |
Basic Matrix Algebra | |
template<typename T > | |
void | fill (const T f, Matrix< T > &M) |
set M to f entrywise | |
template<typename T > | |
void | conj (Matrix< T > &M) |
conjugate entries in vector | |
template<typename T > | |
void | scale (const T f, Matrix< T > &M) |
compute M ≔ f · M | |
template<typename T_value , typename T_derived > | |
void | copy (const MatrixBase< T_derived > &A, Matrix< T_value > &B) |
copy A to B | |
template<typename T > | |
void | transpose (Matrix< T > &A) |
transpose matrix A: A → A^T ASSUMPTION: A is square matrix | |
template<typename T > | |
void | conj_transpose (Matrix< T > &A) |
conjugate transpose matrix A: A → A^H ASSUMPTION: A is square matrix | |
template<typename T > | |
void | max_idx (const Matrix< T > &M, idx_t &row, idx_t &col) |
determine index (i,j) with maximal absolute value in M and return in row and col | |
template<typename T > | |
void | add (const T f, const Matrix< T > &A, Matrix< T > &B) |
compute B = B + f A | |
template<typename T > | |
void | add_r1 (const T alpha, const Vector< T > &x, const Vector< T > &y, Matrix< T > &A) |
compute A ≔ A + α·x·y^H | |
template<typename T_value , typename T_derived > | |
void | mulvec (const T_value alpha, const MatrixBase< T_derived > &A, const Vector< T_value > &x, const T_value beta, Vector< T_value > &y) |
compute y ≔ β·y + α·A·x | |
template<typename T_value , typename T_derived > | |
void | mulvec_tri (const tri_type_t shape, const diag_type_t diag, const MatrixBase< T_derived > &A, Vector< T_value > &x) |
compute x ≔ M·x, where M is upper or lower triangular with unit or non-unit diagonal | |
template<typename T_value , typename T_derived_A , typename T_derived_B > | |
void | prod (const T_value alpha, const MatrixBase< T_derived_A > &A, const MatrixBase< T_derived_B > &B, const T_value beta, Matrix< T_value > &C) |
compute C ≔ β·C + α·A·B | |
template<typename T_derived_A , typename T_derived_B > | |
void | hadamard_prod (const MatrixBase< T_derived_A > &A, MatrixBase< T_derived_B > &B) |
compute B ≔ A⊙B, e.g. Hadamard product | |
template<typename T_value , typename T_derived > | |
void | prod_tri (const eval_side_t side, const tri_type_t uplo, const diag_type_t diag, const T_value alpha, const MatrixBase< T_derived > &A, Matrix< T_value > &B) |
compute B ≔ α·A·B or B ≔ α·B·A | |
template<typename T > | |
void | prod_diag (Matrix< T > &M, const Vector< typename num_traits< T >::real_t > &D, const idx_t k) |
multiply k columns of M with diagonal matrix D, e.g. compute M ≔ M·D | |
template<typename T > | |
num_traits< T >::real_t | norm2 (const Matrix< T > &M) |
return spectral norm of M | |
template<typename T > | |
num_traits< T >::real_t | normF (const Matrix< T > &M) |
return Frobenius norm of M | |
template<typename T > | |
num_traits< T >::real_t | normF (const Matrix< T > &A, const Matrix< T > &B) |
compute Frobenius norm of A-B | |
template<typename T > | |
num_traits< T >::real_t | cond (const Matrix< T > &M) |
return condition of M | |
template<typename T > | |
void | make_symmetric (Matrix< T > &A) |
make given matrix symmetric, e.g. copy lower left part to upper right part | |
template<typename T > | |
void | make_hermitian (Matrix< T > &A) |
make given matrix hermitian, e.g. copy conjugated lower left part to upper right part and make diagonal real | |
template<typename T_value , typename T_derived > | |
void | add (const T_value f, const MatrixBase< T_derived > &A, Matrix< T_value > &B) |
Advanced Matrix Algebra | |
template<typename T > | |
void | solve (Matrix< T > &A, Matrix< T > &B) |
solve A·X = B with known A and B; X overwrites B | |
template<typename T_value , typename T_derived > | |
void | solve_tri (const tri_type_t uplo, const diag_type_t diag, const MatrixBase< T_derived > &A, Vector< T_value > &b) |
solve A·x = b with known A and b; x overwrites b | |
template<typename T_value , typename T_derived > | |
void | solve_tri (const eval_side_t side, const tri_type_t uplo, const diag_type_t diag, const T_value alpha, const MatrixBase< T_derived > &A, Matrix< T_value > &B) |
solve A·X = α·B or X·A· = α·B with known A and B; X overwrites B | |
template<typename T > | |
void | invert (Matrix< T > &A) |
invert matrix A; A will be overwritten with A^-1 upon exit | |
template<typename T > | |
void | invert (Matrix< T > &A, const tri_type_t tri_type, const diag_type_t diag_type) |
invert lower or upper triangular matrix A with unit or non-unit diagonal; A will be overwritten with A^-1 upon exit | |
template<typename T > | |
void | lu (Matrix< T > &A) |
compute LU factorisation of the n×m matrix A with n×min(n,m) unit diagonal lower triangular matrix L and min(n,m)xm upper triangular matrix U; A will be overwritten with L and U upon exit | |
template<typename T > | |
void | llt (Matrix< T > &A) |
compute L·L^T factorisation of given symmetric n×n matrix A | |
template<typename T > | |
void | llh (Matrix< T > &A) |
compute L·L^H factorisation of given hermitian n×n matrix A | |
template<typename T > | |
void | ldlt (Matrix< T > &A) |
compute L·D·L^T factorisation of given symmetric n×n matrix A | |
template<typename T > | |
void | ldlh (Matrix< T > &A) |
compute L·D·L^H factorisation of given hermitian n×n matrix A | |
template<typename T > | |
void | qr (Matrix< T > &A, Matrix< T > &R) |
compute QR factorisation of the n×m matrix A with n×m matrix Q and mxm matrix R (n >= m); A will be overwritten with Q upon exit | |
template<typename T > | |
void | eigen (Matrix< T > &M, Vector< T > &eig_val, Matrix< T > &eig_vec) |
compute eigenvalues and eigenvectors of matrix M | |
template<typename T > | |
void | eigen (Matrix< T > &M, const Range &eig_range, Vector< T > &eig_val, Matrix< T > &eig_vec) |
compute selected (by eig_range) eigenvalues and eigenvectors of the symmetric matrix M | |
template<typename T > | |
void | eigen (Vector< T > &diag, Vector< T > &subdiag, Vector< T > &eig_val, Matrix< T > &eig_vec) |
compute eigenvalues and eigenvectors of the symmetric, tridiagonal matrix defines by diagonal coefficients in diag and off-diagonal coefficients subdiag | |
template<typename T > | |
void | svd (Matrix< T > &A, Vector< typename num_traits< T >::real_t > &S, Matrix< T > &V) |
compute SVD decomposition ![]() | |
template<typename T > | |
void | svd (Matrix< T > &A, Vector< typename num_traits< T >::real_t > &S, const bool left=true) |
compute SVD decomposition ![]() | |
template<typename T > | |
void | sv (Matrix< T > &A, Vector< typename num_traits< T >::real_t > &S) |
compute SVD decomposition ![]() | |
template<typename T > | |
void | sv (Matrix< T > &A, Matrix< T > &B, Vector< typename num_traits< T >::real_t > &S) |
compute SVD decomposition ![]() | |
template<typename T > | |
size_t | approx (Matrix< T > &M, const TTruncAcc &acc, Matrix< T > &A, Matrix< T > &B) |
approximate given dense matrix M by low rank matrix according to accuracy acc. The low rank matrix will be stored in A and B | |
template<typename T > | |
size_t | truncate (Matrix< T > &A, Matrix< T > &B, const TTruncAcc &acc) |
truncate given A · B^H low rank matrix matrix (A being n×k and B being m×k) with respect to given accuracy acc; store truncated matrix in A(:,0:k-1) and B(:,0:k-1) where k is the returned new rank after truncation | |
template<typename T > | |
void | factorise_ortho (Matrix< T > &A, Matrix< T > &R) |
construct factorisation A = Q·R of A, with orthonormal Q | |
template<typename T > | |
void | factorise_ortho (Matrix< T > &A, Matrix< T > &R, const TTruncAcc &acc) |
construct approximate factorisation A = Q·R of A, with orthonormal Q |
Matrix Modifiers | |
Classes for matrix modifiers, e.g. transposed and adjoint view. | |
template<typename T_matrix > | |
TransposeView< T_matrix > | transposed (const T_matrix &M) |
return transposed view object for matrix | |
template<typename T_matrix > | |
AdjoinView< T_matrix > | adjoint (const T_matrix &M) |
return adjoint view object for matrix | |
template<typename T_matrix > | |
MatrixView< T_matrix > | mat_view (const matop_t op, const T_matrix &M) |
convert matop_t into view object |
This modules provides most low level algebra functions, e.g. vector dot products, matrix multiplication, factorisation and singular value decomposition. See also BLAS/LAPACK Interface for an introduction.
To include all BLAS algebra functions and classes add
to your source files.
AdjoinView< T_matrix > HLIB::BLAS::adjoint | ( | const T_matrix & | M | ) |
M | matrix to conjugate transpose |
num_traits< T >::real_t HLIB::BLAS::cond | ( | const Matrix< T > & | M | ) |
void HLIB::BLAS::eigen | ( | Matrix< T > & | M, |
const Range & | eig_range, | ||
Vector< T > & | eig_val, | ||
Matrix< T > & | eig_vec | ||
) |
void HLIB::BLAS::factorise_ortho | ( | Matrix< T > & | A, |
Matrix< T > & | R | ||
) |
void HLIB::BLAS::factorise_ortho | ( | Matrix< T > & | A, |
Matrix< T > & | R, | ||
const TTruncAcc & | acc | ||
) |
MatrixView< T_matrix > HLIB::BLAS::mat_view | ( | const matop_t | op, |
const T_matrix & | M | ||
) |
op | matop_t value |
M | matrix to create view for |
T HLIB::BLAS::stable_dotu | ( | const Vector< T > & | x, |
const Vector< T > & | y | ||
) |
x | first argument of dot product |
y | second argument of dot product |
T HLIB::BLAS::stable_sum | ( | const Vector< T > & | x | ) |
x | vector holding coefficients to sum up |
TransposeView< T_matrix > HLIB::BLAS::transposed | ( | const T_matrix & | M | ) |
M | matrix to transpose |