|
matform_t | format () const |
| return format of bilinear form, e.g. symmetric
|
|
| TInvarBasisQuadBEMBF (const ansatzsp_t *ansatzsp, const testsp_t *testsp, const uint order=CFG::BEM::quad_order, const bool dist_ada=CFG::BEM::adaptive_quad_order) |
|
virtual | ~TInvarBasisQuadBEMBF () |
| destructor
|
|
virtual void | eval (const std::vector< idx_t > &row_ind, const std::vector< idx_t > &col_ind, BLAS::Matrix< value_t > &values) const |
|
| TQuadBEMBF (const ansatzsp_t *ansatzsp, const testsp_t *testsp, const uint order=CFG::BEM::quad_order, const bool dist_ada=CFG::BEM::adaptive_quad_order) |
|
virtual | ~TQuadBEMBF () |
| destructor
|
|
| TBEMBF (const ansatzsp_t *aansatzsp, const testsp_t *atestsp) |
| construct bilinear form over function spaces ansatzsp and testsp
|
|
virtual | ~TBEMBF () |
| destructor
|
|
const ansatzsp_t * | ansatz_space () const |
| return ansatz space
|
|
const testsp_t * | test_space () const |
| return test space
|
|
bool | is_complex () const |
| return true if bilinear form is complex valued
|
|
|
virtual void | eval_kernel (const idx_t tri0idx, const idx_t tri1idx, const TGrid::triangle_t &tri0, const TGrid::triangle_t &tri1, const tripair_quad_rule_t< real_t > *quad_rule, std::vector< value_t > &values) const |
|
void | compute_basis_func () |
| compute ansatz and test basis functions for all quadrature points
|
|
const std::vector< ansatz_value_t > * | ansatz_val (const idx_t idx, const TGrid::triangle_t &tri, const uint ncommon, const uint order) const |
|
const std::vector< test_value_t > * | test_val (const idx_t idx, const TGrid::triangle_t &tri, const uint ncommon, const uint order) const |
| same as More...
|
|
uint | reorder_common (idx_t *vtx0idxs, idx_t *vtx1idxs) const |
|
uint | adjust_order (const idx_t *vtx0idxs, const idx_t *vtx1idxs, const uint order) const |
| adjust quadrature order order depending on diameter and distance of triangles
|
|
const tripair_quad_rule_t< real_t > * | quad_rule (const uint ncommon, const uint order) const |
| return quadrature rule for ncommon vertices and order order
|
|
template<typename T_ansatzsp, typename T_testsp, typename T_value = double>
class Hpro::TLaplaceSLPBF< T_ansatzsp, T_testsp, T_value >
TLaplaceSLPBF implements the bilinear form for the Laplace
single layer potential with the kernel function
\f[ \frac{1}{\|x-y\|_2} \f]
i.e. for the integral equation
\f[ 4 \pi \int_{\Gamma} \frac{u(y)}{\|x-y\|_2} dy = f(x) \f]