HLIBpro  2.9.1
TQuadBEMBF< T_ansatzsp, T_testsp, T_val > Class Template Referenceabstract

Base class for all quadrature based bilinear forms. More...

#include <TQuadBEMBF.hh>

Inheritance diagram for TQuadBEMBF< T_ansatzsp, T_testsp, T_val >:
TBEMBF< T_ansatzsp, T_testsp, T_val > TBilinearForm< T_val > TInvarBasisQuadBEMBF< T_ansatzsp, T_testsp, real > TInvarBasisQuadBEMBF< T_ansatzsp, T_testsp, T_val > TExpBF< T_ansatzsp, T_testsp > TLaplaceDLPBF< T_ansatzsp, T_testsp > TLaplaceSLPBF< T_ansatzsp, T_testsp >

Public Member Functions

 TQuadBEMBF (const ansatzsp_t *ansatzsp, const testsp_t *testsp, const uint order=CFG::BEM::quad_order, const bool dist_ada=CFG::BEM::adaptive_quad_order)
 
virtual ~TQuadBEMBF ()
 destructor
 
virtual void eval (const std::vector< idx_t > &row_ind, const std::vector< idx_t > &col_ind, BLAS::Matrix< value_t > &values) const
 
- Public Member Functions inherited from TBEMBF< T_ansatzsp, T_testsp, T_val >
 TBEMBF (const ansatzsp_t *aansatzsp, const testsp_t *atestsp)
 construct bilinear form over function spaces ansatzsp and testsp
 
virtual ~TBEMBF ()
 destructor
 
const ansatzsp_t * ansatz_space () const
 return ansatz space
 
const testsp_t * test_space () const
 return test space
 
- Public Member Functions inherited from TBilinearForm< T_val >
bool is_complex () const
 return true if bilinear form is complex valued
 
virtual matform_t format () const
 return format of bilinear form, e.g. symmetric
 

Protected Member Functions

uint reorder_common (idx_t *vtx0idxs, idx_t *vtx1idxs) const
 
uint adjust_order (const idx_t *vtx0idxs, const idx_t *vtx1idxs, const uint order) const
 adjust quadrature order order depending on diameter and distance of triangles
 
const tripair_quad_rule_tquad_rule (const uint ncommon, const uint order) const
 return quadrature rule for ncommon vertices and order order
 
virtual void eval_kernel (const idx_t tri0idx, const idx_t tri1idx, const TGrid::triangle_t &tri0, const TGrid::triangle_t &tri1, const tripair_quad_rule_t *quad_rule, std::vector< value_t > &values) const =0
 

Additional Inherited Members

- Protected Attributes inherited from TBEMBF< T_ansatzsp, T_testsp, T_val >
const ansatzsp_t * _ansatz_sp
 function space for ansatz functions
 
const testsp_t * _test_sp
 function space for test functions
 

Detailed Description

template<typename T_ansatzsp, typename T_testsp, typename T_val>
class HLIB::TQuadBEMBF< T_ansatzsp, T_testsp, T_val >

     TQuadBEMBF extends TBEMBF by providing quadrature rules for
     triangle pairs and defining a kernel function evaluation interface.

Constructor & Destructor Documentation

◆ TQuadBEMBF()

TQuadBEMBF ( const ansatzsp_t *  ansatzsp,
const testsp_t *  testsp,
const uint  order = CFG::BEM::quad_order,
const bool  dist_ada = CFG::BEM::adaptive_quad_order 
)

construct bilinear form over function spaces ansatzsp and testsp using quadratur with order order; if dist_ada is true, the quadrature order is adaptively adjusted according to distance

Member Function Documentation

◆ eval()

virtual void eval ( const std::vector< idx_t > &  row_ind,
const std::vector< idx_t > &  col_ind,
BLAS::Matrix< value_t > &  values 
) const
virtual

evaluate subblock defined by row_ind × col_ind; the indices in row_ind and col_ind can be arbitrary, e.g. must not be contiguous

Implements TBilinearForm< T_val >.

Reimplemented in TInvarBasisQuadBEMBF< T_ansatzsp, T_testsp, T_val >, TInvarBasisQuadBEMBF< T_ansatzsp, T_testsp, real >, and TInvarBasisQuadBEMBF< T_ansatzsp, T_testsp, complex >.

◆ eval_kernel()

virtual void eval_kernel ( const idx_t  tri0idx,
const idx_t  tri1idx,
const TGrid::triangle_t tri0,
const TGrid::triangle_t tri1,
const tripair_quad_rule_t quad_rule,
std::vector< value_t > &  values 
) const
protectedpure virtual

compute kernel at quadrature points in triangles tri0idx and tri1idx with coordinate indices tri0 and tri1 using quadrature rule quad_rule; the results for all points are returned in values

◆ reorder_common()

uint reorder_common ( idx_t *  vtx0idxs,
idx_t *  vtx1idxs 
) const
protected

reorder triangle vertices such that the k common vertices are ordered from 0,…,k-1; the number of common vertices is returned