HLIBpro  2.8.1
TSparseMatrix Class Reference

Class for a sparse matrix stored in compressed row storage format.

#include <TSparseMatrix.hh>

Inheritance diagram for TSparseMatrix:
TMatrix TLinearOperator TLockable TTypeInfo

Public Member Functions

 TSparseMatrix (const size_t anrows, const size_t ancols)
 construct sparse matrix of size anrows × ancols
 
 TSparseMatrix (const TIndexSet arow_is, const TIndexSet acol_is)
 construct sparse matrix of size anrows × ancols
 
 TSparseMatrix (const TBlockCluster *bct=nullptr)
 construct sparse matrix with size defined by block cluster bct
 
virtual void set_cluster (const TBlockCluster *bct)
 set block cluster of matrix
 
virtual void set_size (const size_t nrows, const size_t ncols)
 directly set dimension of matrix
 
void init (const size_t nnz)
 initialise CRS data for nnz non-zero entries
 
size_t rows () const
 return number of rows in matrix
 
size_t cols () const
 return number of columns in matrix
 
size_t n_non_zero () const
 return number of non-zero elements
 
virtual void to_real ()
 convert coefficients to real valued representation (if possible)
 
virtual void to_complex ()
 convert coefficients to complex valued representation
 
virtual real entry (const idx_t i, const idx_t j) const
 return matrix coefficient a_ij (real valued)
 
virtual const complex centry (const idx_t i, const idx_t j) const
 return matrix coefficient a_ij (complex valued)
 
virtual void set_entry (const idx_t i, const idx_t j, const real c)
 set matrix coefficient a_ij if existent (real valued)
 
virtual void set_entry (const idx_t i, const idx_t j, const complex c)
 set matrix coefficient a_ij if existent (complex valued)
 
virtual void add_entry (const idx_t i, const idx_t j, const real c)
 add c to matrix coefficient a_ij if existent (real valued)
 
virtual void add_entry (const idx_t i, const idx_t j, const complex c)
 add c to matrix coefficient a_ij if existent (complex valued)
 
virtual bool has_entry (const idx_t i, const idx_t j) const
 return true if entry (i, j) exists
 
void sort_entries ()
 sort matrix coefficients per row with respect to column
 
idx_t rowptr (const idx_t i) const
 return i'th row pointer (constant)
 
idx_t & rowptr (const idx_t i)
 return i'th row pointer
 
idx_t colind (const idx_t i) const
 return i'th column index (constant)
 
idx_t & colind (const idx_t i)
 return i'th column index
 
real rcoeff (const idx_t i) const
 return i'th coefficient (real valued, constant)
 
real & rcoeff (const idx_t i)
 return i'th coefficient (real valued)
 
const complex ccoeff (const idx_t i) const
 return i'th coefficient (complex valued, constant)
 
complexccoeff (const idx_t i)
 return i'th coefficient (complex valued)
 
void permute (const TPermutation &rowperm, const TPermutation &colperm)
 
bool test_symmetry ()
 return true if matrix is symmetric (really check data)
 
size_t avg_entries_per_row () const
 compute average number of entries per row
 
size_t max_entries_per_row () const
 compute maximal number of entries per row
 
bool has_diag_zero (const real eps=0.0)
 return true if matrix contains zero or elements < ε on diagonal
 
bool is_diag_dom (const bool weak=false)
 return true if S is (weakly) diagonally dominant
 
real diag_dom_factor ()
 return factor α, such that S + α·I is diagonally dominant (this = S)
 
void check_matrix () const
 perform some tests on the matrix (for debugging)
 
template<typename T_idx , typename T_val >
void import_crs (const size_t nrows, const size_t ncols, const size_t nnonzero, const T_idx *rowptr, const T_idx *colind, const T_val *coeffs)
 import CRS data into local matrix
 
template<typename T_idx , typename T_val >
void import_ccs (const size_t nrows, const size_t ncols, const size_t nnonzero, const T_idx *colptr, const T_idx *rowind, const T_val *coeffs)
 import CCS data into local matrix
 
template<typename T_idx , typename T_val >
void export_ccs (std::vector< T_idx > &colptr, std::vector< T_idx > &rowind, std::vector< T_val > &coeffs, const bool use_sym) const
 
virtual void scale (const real alpha)
 compute this ≔ α·this
 
virtual void mul_vec (const real alpha, const TVector *x, const real beta, TVector *y, const matop_t op=MATOP_NORM) const
 compute y ≔ β·y + α·op(M)·x, with M = this
 
virtual void add (const real alpha, const TMatrix *matrix)
 compute this ≔ this + α · matrix
 
virtual void transpose ()
 transpose matrix
 
virtual void conjugate ()
 conjugate matrix coefficients
 
virtual void cscale (const complex alpha)
 compute this ≔ α·this
 
virtual void cmul_vec (const complex alpha, const TVector *x, const complex beta, TVector *y, const matop_t op=MATOP_NORM) const
 compute y ≔ β·y + α·op(M)·x, with M = this
 
virtual void cadd (const complex a, const TMatrix *matrix)
 compute this ≔ this + α · matrix
 
virtual void truncate (const TTruncAcc &)
 truncate matrix to given accuracy (NOT YET IMPLEMENTED)
 
std::unique_ptr< TSparseMatrixrestrict (const TIndexSet &rowis, const TIndexSet &colis) const
 restrict sparse matrix to block index set rowis × colis
 
std::unique_ptr< TSparseMatrixrestrict (const TIndexSet &rowis, const TPermutation *rowperm, const TIndexSet &colis, const TPermutation *colperm) const
 
size_t restrict_nonzeroes (const TIndexSet &rowis, const TIndexSet &colis) const
 return number of coefficients in sub block index set rowis × colis
 
size_t restrict_nonzeroes (const TIndexSet &rowis, const TPermutation *rowperm, const TIndexSet &colis, const TPermutation *colperm) const
 return number of coefficients in sub block index set rowis × colis
 
virtual void print (const uint ofs=0) const
 print matrix to stdout
 
virtual void read (TByteStream &s)
 read data from stream s and copy to matrix
 
virtual void build (TByteStream &s)
 use data from stream s to build matrix
 
virtual void write (TByteStream &s) const
 write data to stream s
 
virtual size_t bs_size () const
 returns size of object in bytestream
 
virtual auto create () const -> std::unique_ptr< TMatrix >
 return matrix of same class (but no content)
 
virtual auto copy () const -> std::unique_ptr< TMatrix >
 return copy of matrix
 
virtual auto copy_struct () const -> std::unique_ptr< TMatrix >
 return structural copy of matrix
 
virtual void copy_to (TMatrix *A) const
 copy matrix into matrix A
 
virtual size_t byte_size () const
 return size in bytes used by this object
 
virtual void check_data () const
 test data for invalid values, e.g. INF and NAN
 
virtual void print_pattern_hist (std::ostream &os) const
 print histogram for entries per row in GNUPLOT format
 
virtual auto copy () const -> std::unique_ptr< TMatrix >
 return copy of matrix
 
virtual auto copy (const TTruncAcc &acc, const bool coarsen=false) const -> std::unique_ptr< TMatrix >
 return copy of matrix with accuracy acc and optional coarsening
 
virtual void copy_to (TMatrix *A) const
 copy matrix into matrix A
 
virtual void copy_to (TMatrix *A, const TTruncAcc &acc, const bool coarsen=false) const
 copy matrix into matrix A with accuracy acc and optional coarsening
 
- Public Member Functions inherited from TMatrix
 TMatrix (const value_type_t avalue_type=real_valued)
 construct zero sized matrix
 
 TMatrix (const TBlockCluster *bcl, const value_type_t avalue_type=real_valued)
 construct matrix of size defined by block cluster bcl
 
 TMatrix (const TBlockIndexSet &bis, const value_type_t avalue_type=real_valued)
 construct matrix of size defined by block index set bis
 
 TMatrix (const TMatrix &A)
 copy constructor
 
virtual ~TMatrix ()
 dtor
 
int id () const
 return ID
 
void set_id (const int aid)
 set ID
 
virtual size_t nrows (const matop_t op) const
 return number of rows of op(M)
 
virtual size_t ncols (const matop_t op) const
 return number of columns of op(M)
 
TIndexSet row_is () const
 return row index set
 
TIndexSet col_is () const
 return column index set
 
TBlockIndexSet block_is () const
 return block index set
 
TIndexSet row_is (const matop_t op) const
 return row index set w.r.t. given matrix operation
 
TIndexSet col_is (const matop_t op) const
 return row index set w.r.t. given matrix operation
 
TBlockIndexSet block_is (const matop_t op) const
 return row index set w.r.t. given matrix operation
 
virtual idx_t row_ofs () const
 return first index (number) in row
 
virtual idx_t col_ofs () const
 return first index (number) in column
 
virtual void set_ofs (const idx_t r, const idx_t c)
 set index set offsets
 
virtual void set_block_is (const TBlockIndexSet &is)
 set block index set of matrix
 
bool is_nonsym () const
 return true if matrix is unsymmetric
 
bool is_symmetric () const
 return true if matrix is symmetric
 
bool is_hermitian () const
 return true if matrix is hermitian
 
matform_t form () const
 return matrix format
 
void set_nonsym ()
 set matrix to be unsymmetric
 
void set_symmetric ()
 set matrix to be symmetric
 
void set_hermitian ()
 set matrix to be hermitian
 
virtual void set_form (const matform_t f)
 set matrix format
 
virtual bool is_zero () const
 return true, if matrix is zero
 
virtual bool is_blocked () const
 return true, if matrix is blocked
 
virtual bool is_dense () const
 return true, if matrix is dense
 
virtual bool is_self_adjoint () const
 return true, if operator is self adjoint
 
const TProcSetprocs () const
 return matrix processor set
 
uint nprocs () const
 return number of processors in local set
 
virtual void set_procs (const TProcSet &ps, const recursion_type_t rec_type=nonrecursive)
 set processor set of matrix
 
bool is_distributed () const
 return true if matrix is distributed
 
virtual void copy_struct_from (const TMatrix *M)
 
value_type_t value_type () const
 return value type of matrix
 
void set_value_type (const value_type_t vt)
 set value type of matrix
 
bool is_real () const
 return true if matrix is real valued
 
bool is_complex () const
 return true if matrix is complex valued
 
void set_complex (const bool b, const bool force=false)
 
TUpdateAccumulatoraccumulator ()
 access accumulator object
 
void add_update (const TMatrix *M, const TTruncAcc &acc)
 add update matrix
 
void add_pending_direct (TDirectMatrixUpdate *U)
 add update U to set of recursive pending updates
 
void add_pending_recursive (TRecursiveMatrixUpdate *U)
 add update U to set of recursive pending updates
 
virtual void apply_updates (const TTruncAcc &acc, const recursion_type_t rec_type)
 
virtual bool has_updates (const recursion_type_t recursion) const
 return true, if matrix has updates not yet applied
 
virtual bool has_parent_updates (const recursion_type_t recursion) const
 return true, if parent matrix has updates not yet applied
 
const TBlockClustercluster () const
 return corresponding block cluster of matrix
 
virtual void set_cluster_force (const TBlockCluster *c)
 set block cluster of matrix (with forced setting of cluster variable)
 
virtual void apply (const TVector *x, TVector *y, const matop_t op=apply_normal) const
 
virtual void apply_add (const real alpha, const TVector *x, TVector *y, const matop_t op=apply_normal) const
 
virtual void apply_add (const real alpha, const BLAS::Vector< real > &x, BLAS::Vector< real > &y, const matop_t op=apply_normal) const
 
virtual size_t domain_dim () const
 return dimension of domain
 
virtual size_t range_dim () const
 return dimension of range
 
virtual auto domain_vector () const -> std::unique_ptr< TVector >
 return vector in domain space
 
virtual auto range_vector () const -> std::unique_ptr< TVector >
 return vector in range space
 
virtual TMatrixmul_right (const real alpha, const TMatrix *B, const matop_t op_A, const matop_t op_B) const
 compute α·op(A)·op(B), with A = this
 
virtual TMatrixmul_left (const real alpha, const TMatrix *A, const matop_t op_A, const matop_t op_B) const
 compute α·op(A)·op(B), with B = this
 
virtual TMatrixcmul_right (const complex alpha, const TMatrix *B, const matop_t op_A, const matop_t op_B) const
 compute α·op(A)·op(B), with A = this
 
virtual TMatrixcmul_left (const complex alpha, const TMatrix *A, const matop_t op_A, const matop_t op_B) const
 compute α·op(A)·op(B), with B = this
 
virtual size_t global_byte_size () const
 
virtual auto copy (const TTruncAcc &acc, const bool coarsen=false) const -> std::unique_ptr< TMatrix >
 return copy of matrix with accuracy acc and optional coarsening
 
virtual void copy_from (const TMatrix *A)
 copy data from matrix A
 
virtual void copy_to (TMatrix *A, const TTruncAcc &acc, const bool coarsen=false) const
 copy matrix into matrix A with accuracy acc and optional coarsening
 
virtual auto row_vector () const -> std::unique_ptr< TVector >
 return appropriate row vector object for matrix
 
virtual auto col_vector () const -> std::unique_ptr< TVector >
 return appropriate column vector object for matrix
 
virtual void sum (const TProcSet &p, const uint pid, const uint nparts, TByteStream *bs, const TTruncAcc &acc)
 
- Public Member Functions inherited from TTypeInfo
virtual typeid_t type () const =0
 return type ID of object
 
virtual bool is_type (const typeid_t t) const
 return true if local object is of given type ID t
 
virtual std::string typestr () const
 return string representation of type
 
- Public Member Functions inherited from TLockable
TMutexmutex ()
 give access to internal mutex
 
void lock ()
 lock local mutex
 
void unlock ()
 unlock local mutex
 
size_t byte_size () const
 return size in bytes used by this object
 

Member Function Documentation

◆ export_ccs()

void export_ccs ( std::vector< T_idx > &  colptr,
std::vector< T_idx > &  rowind,
std::vector< T_val > &  coeffs,
const bool  use_sym 
) const

export internal data to CCS format (real valued); if use_sym is true, only the lower triangular part is exported

◆ permute()

void permute ( const TPermutation rowperm,
const TPermutation colperm 
)

permute entries in sparse matrix according to rowperm (for rows) and colperm (for columns)

◆ restrict()

std::unique_ptr< TSparseMatrix > restrict ( const TIndexSet rowis,
const TPermutation rowperm,
const TIndexSet colis,
const TPermutation colperm 
) const

restrict sparse matrix to block index set rowis × colis which is given in a different ordering

  • rowperm permutes the row indices to the local ordering of the sparse matrix, while colperm permutes the local column indices to the ordering of colis
  • the returned matrix has the same ordering as rowis and colis