HLIBpro
2.6
|
implements SOR preconditioner for sparse matrices More...
#include <TSOR.hh>
Public Member Functions | |
TSOR (const TSparseMatrix *A, const sor_type_t sor_type, const real omega=1.0, const real damping=1.0) | |
const TMatrix * | matrix () const |
return internal sparse matrix | |
sor_type_t | sor_type () const |
return SOR type | |
real | damping_factor () const |
return damping factor | |
bool | is_complex () const |
return true, if field type is complex | |
bool | is_self_adjoint () const |
return true, of operator is self adjoint | |
virtual void | apply (const TVector *x, TVector *y, const matop_t op=apply_normal) const |
virtual void | apply_add (const real alpha, const TVector *x, TVector *y, const matop_t op=apply_normal) const |
virtual auto | domain_vector () const -> std::unique_ptr< TVector > |
return vector in domain space | |
virtual auto | range_vector () const -> std::unique_ptr< TVector > |
return vector in range space | |
Public Member Functions inherited from TTypeInfo | |
virtual typeid_t | type () const =0 |
return type ID of object | |
virtual bool | is_type (const typeid_t t) const |
return true if local object is of given type ID t | |
virtual std::string | typestr () const |
return string representation of type | |
TSOR provides application of a SOR type preconditioner for a given sparse matrix \(A = D - E - F\), with diagonal D, strictly lower triangular matrix E and strictly upper triangular matrix F.
For forward SOR, the applied operator is \( \omega ( D - \omega E )^{-1}\), for backward SOR \( \omega ( D - \omega F )^{-1}\) and the combination of both for the symmetric SOR.
TSOR | ( | const TSparseMatrix * | A, |
const sor_type_t | sor_type, | ||
const real | omega = 1.0 , |
||
const real | damping = 1.0 |
||
) |
constructs SOR preconditioner of type sor_type using coefficients as defined by sparse matrix A
|
virtual |
mapping function of linear operator \(A\), e.g. \( y := A(x)\). Depending on op, either \(A\), \(A^T\) or \(A^H\) is applied.
Implements TLinearOperator.
|
virtual |
mapping function with update: \( y := y + \alpha A(x)\). Depending on op, either \(A\), \(A^T\) or \(A^H\) is applied.
Implements TLinearOperator.