HLIBpro
2.6
|
implements Jacobi preconditioner More...
#include <TJacobi.hh>
Public Member Functions | |
TJacobi (const TMatrix *A, const real damping=1.0, const size_t block_size=1, const TTruncAcc &acc_block=acc_machine) | |
const TMatrix * | matrix () const |
return sparse matrix | |
real | damping_factor () const |
return damping factor | |
bool | is_complex () const |
return true, if field type is complex | |
bool | is_self_adjoint () const |
return true, of operator is self adjoint | |
virtual void | apply (const TVector *x, TVector *y, const matop_t op=apply_normal) const |
virtual void | apply_add (const real alpha, const TVector *x, TVector *y, const matop_t op=apply_normal) const |
virtual auto | domain_vector () const -> std::unique_ptr< TVector > |
return vector in domain space | |
virtual auto | range_vector () const -> std::unique_ptr< TVector > |
return vector in range space | |
Public Member Functions inherited from TTypeInfo | |
virtual typeid_t | type () const =0 |
return type ID of object | |
virtual bool | is_type (const typeid_t t) const |
return true if local object is of given type ID t | |
virtual std::string | typestr () const |
return string representation of type | |
TJacobi provides application of a Jacobi type preconditioner for a given matrix A, e.g. \( D^{-1} \) with \(D\) being the diagonal of A. Here, A may be of any type, e.g. dense, low-rank, block or sparse matrix. The diagonal elements are assumed to be non-zero.
Also support block-wise mode, i.e., diagonal blocks are inverted. For this, the size of diagonal block is defined during construction. If this equals 1 point-wise Jacobi is used. Please note, that for block-wise mode, the leaf blocks define the smallest block size.
TJacobi | ( | const TMatrix * | A, |
const real | damping = 1.0 , |
||
const size_t | block_size = 1 , |
||
const TTruncAcc & | acc_block = acc_machine |
||
) |
construct Jacobi preconditioner based on matrix A with damping factor damping
|
virtual |
mapping function of linear operator \(A\), e.g. \( y := A(x)\). Depending on op, either \(A\), \(A^T\) or \(A^H\) is applied.
Implements TLinearOperator.
|
virtual |
mapping function with update: \( y := y + \alpha A(x)\). Depending on op, either \(A\), \(A^T\) or \(A^H\) is applied.
Implements TLinearOperator.